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The unsteady flow field of an incompressible viscous fluid around an impulsively
started cylinder with slow motion is studied in detail. Integral expressions are derived
from the nonlinear vorticity equation, and are solved by the method of matched
asymptotic expansions. To complete the matching process five regions are necessary
and their regions are essentially governed by the following relations: (i) the initial
flow is unsteady Stokes flow (I), (ii) the early transient flow near the cylinder is
steady Stokes flow (II), but the far-field flow is unsteady Stokes flow (III), so that
Stokes–Oseen-like matching is necessary, and (iii) as time increases the inertia terms
become significant far downstream; thus the far flow is unsteady Oseen flow (IV),
but the flow near the cylinder is steady Stokes flow (V), so that the matching of the
Stokes–Oseen equations is necessary. The asymptotic analytical solutions are given
for five flow fields around a circular cylinder. Also presented are the drag coefficient,
the vorticity, and the streamline. The drag coefficient is verified quantitatively by
comparing with earlier theories of the initial flow and the steady flow. The streamline
patterns calculated show the generation of a circulating zone close to the circular
cylinder just as for the transient flow around a sphere, and the difference between
two-dimensional and three-dimensional flows is discussed.

1. Introduction
The problem of unsteady viscous incompressible flow past a cylinder when a finite

velocity is suddenly imparted to the cylinder is one of current interest in the full
Navier–Stokes solutions. The analytic solution of the full Navier–Stokes equations
for this flow field with finite Reynolds number is at present beyond our capabilities,
but many numerical solutions have been reported (e.g. see Lecointe & Piquet 1984
for a representative bibliography). The analytic solution of the initial flow over an
impulsively started circular cylinder at finite Reynolds numbers has been investigated
by many investigators (e.g. Collins & Dennis 1973a, b and Badr & Dennis 1985). In
these works, an iterative procedure is used, based on the assumption that the solution
proceeds in power series of the normalized time. Bar-Lev & Yang (1975) develop
this problem systematically, using the method of matched asymptotic expansions with
respect to the time: the time-coordinate perturbation technique is applied and the
region of non-uniformity near the cylinder is stretched to unity order.

The solution for the low Reynolds number flow past a solid sphere which represents
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the entire process of transition from stagnancy to the steady state has been studied
by Bentwich & Miloh (1978) and Sano (1981). In their works, the Reynolds number
based on the velocity which is suddenly imparted to the sphere in fluid initially at rest
is assumed to be small and the method of matched asymptotic expansions is applied
to the analysis. The time coordinate is differently scaled in the Stokes and Oseen
domains. Bentwich & Miloh (1978) stated that an L-shaped region adjacent to the
space and time axes is necessary in the matching process, but Sano (1981) pointed
out that their L-shaped region is incomplete and corrected their matching procedure.

Whitehead’s paradox occurs in the steady three-dimensional Stokes flow: the second
approximation to the velocity of flow past a sphere remains finite at infinity in a way
which is incompatible with the uniform stream condition, assuming an expansion of
the flow in powers of the Reynolds number. In the two-dimensional Stokes flow,
Stokes’ paradox is stronger: the first approximation is incompatible. This fact implies
that the unsteady low Reynolds number flow around a two-dimensional cylinder is
in principle different from the three-dimensional flow. However, the two-dimensional
transient low Reynolds number flow around an impulsively started cylinder has
hitherto been unreported and the difference from the three-dimensional flow has not
been discussed.

The present paper is an attempt to solve for the unsteady viscous incompressible
flow past a two-dimensional cylinder which starts impulsively with a finite low
rectilinear velocity, by using the method of matched asymptotic expansions. A new
approach is devised to find the regions adjacent to the space and time axes in the
matching process and to obtain the generalized inner and outer expansions, which
are defined by Skinner (1975). Since the motion starts from rest, Laplace transform
methods are used to account for the transient flow. The Oseen type of equation for
vorticity is obtained from the full Navier–Stokes equations, and a system of integral
equations whose kernels do not contain unknown functions is derived. Further they
are simplified to integral equations with one variable, according to Kida & Take
(1992a, b). These equations show that five regions are necessary to complete the
matching process for time and space axes. The drag coefficient from stagnancy to
the steady state is derived: it is singular at the beginning of motion and eventually
reaches the value of the steady flow. The present result is verified by comparing with
earlier results in both limiting cases, the beginning of the motion and the steady
flow. The drag coefficient decreases monotonically with time, but the trend is slower
than in the flow past a sphere. The streamlines of the entire flow field are presented
and show that the features of the transient flow are almost the same as for the flow
past a sphere: the circulating zone is generated in the vicinity of the surface of the
cylinder. The major aim is to show the entire process of transition from stagnancy
to the steady state in the two-dimensional flow and to discuss the difference between
the two-dimensional flow and three-dimensional flow.

The method of matched asymptotic expansions used by Kaplun (1957) and Proud-
man & Pearson (1957) is a powerful method for finding uniformly valid asymptotic
solutions of problems at low Reynolds number. Their asymptotic solutions are derived
from the governing partial differential equations, that is, the Navier–Stokes equations.
In their approach, careful consideration is necessary to complete the matching process,
as pointed out by Kida & Miyai (1978a, b) and Sano (1981). An alternative method
derived from integral equations was proposed by Kida & Miyai (1973). This method
was used by Guermond (1987, 1990) and Guermond & Sellier (1991), in which they
pointed out that this method is systematic. Kida & Miyai (1978a, b) show that we
can derive all terms which are necessary in the matching systematically. A rigorous
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Figure 1. Coordinate systems and physical state.

analysis of this method is reported by Kida (1991). Therefore, this method from the
integral equations is believed to be more powerful than that of Kaplun (1957) and
Proudman & Pearson (1957) in this problem, because the present problem is more
complicated than the three-dimensional problem, as mentioned above. Full details of
the analysis are contained in a typescript in the editorial files of the Journal of Fluid
Mechanics and a copy may be obtained on request to the first-named author or to
the Editor.

2. Basic relations
2.1. Integral formulation

Figure 1 shows a cylinder which impulsively starts with slow velocity U. The x-axis
is parallel to the velocity U and the y-axis is upward. The origin O is set at a
typical point of the cylinder at a time t. The surface of the cylinder is denoted by the
polar coordinates (rs(θs), θs). The Navier–Stokes equations for the two-dimensional
unsteady motion of incompressible viscous fluid are given by

∂u

∂t
+ (u · ∇)u = −gradP + K + ν∇2u, (1)

div u = 0, (2)

where u is the velocity vector, P is the pressure divided by the density of the fluid, ν is
the kinematic viscosity and K is the mass force. Velocities and lengths are normalized
with U and the typical length of the cylinder d. For a circular cylinder, we will take
d to be the radius of the circular cylinder. From these equations (1) and (2) the
governing vorticity equations in dimensionless form are

Dζ

Dt
=

1

Re
∇2ζ,

ζ =−∇2Ψ,

 (3)

where D/Dt is the substantial derivative, ζ is dimensionless vorticity, Ψ is the stream
function, t is dimensionless time, and Re = Ud/ν is Reynolds number. The mass
force K is assumed to be conservative, so that it does not affect the flow kinematics.

Here let ψ be the perturbation stream function. Then, the vorticity ζ is given by

ζ = −∇2ψ. (4)
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The boundary and initial conditions of the unsteady flow around an impulsively
started body are given by

u, v, ζ → 0 where |x| → ∞,
v = 0, u = H(t) on S,

}
(5)

where u and v are dimensionless perturbation velocity components in the x- and
y-directions respectively, S is the boundary surface of the body, and H(t) is the
Heaviside step function; H(t) is unity for t > 0 and zero otherwise. The first
condition of (5) implies that the cylinder is started impulsively from rest and the
second condition is that the cylinder subsequently moves with constant velocity.

Equation (3) is rewritten as

1

Re
∇2ζ − ∂ζ

∂t
+
∂ζ

∂x
= f(x, y, t) (6)

where

f(x, y, t) = u
∂ζ

∂x
+ v

∂ζ

∂y
. (7)

The Laplace transform method is used to account for the transient flow. We let ζ̃
and f̃ be the Laplace transforms of ζ and f, respectively:

ζ̃ =

∫ ∞
0

exp(−pt)ζdt, (8)

f̃ =

∫ ∞
0

exp(−pt)fdt. (9)

Then, ζ̃ is governed by the following relation in view of the initial condition (5) (ζ = 0
at t = 0):

1

Re
∇2ζ̃ − pζ̃ +

∂ζ̃

∂x
= f̃. (10)

We define ε for simplicity of notation as

ε ≡ 1
2
Re (11)

Further, we define ζ̂ as

ζ̂ ≡ exp (εx)ζ̃. (12)

Then, (10) becomes

∇2ζ̂ − ε(ε+ 2p)ζ̂ = 2εf̃ exp (εx). (13)

From the Gauss divergence theorem, the solution of (13) is obtained as

ζ̂(xo) = − ε

2π

∫
D

G(x, xo)F(x)dxdy

+
1

2π

∮
S

[
G(xs, xo)

∂ζ̂(xs)

∂n
− ζ̂(xs)

∂G(xs, xo)

∂n

]
ds (14)

where x = (x, y), xo = (xo, yo) is in D which is the entire region outside the cylinder,
xs is the vector on the surface S of the cylinder, ds is a small length on S , and n is
the normal to the surface of the cylinder, outward with respect to D. The function F
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is defined by

F = 2 exp (εx)f̃, (15)

and the fundamental solution G(x, xo) is governed by the following equation:

∇2G− ε(ε+ 2p)G = −2πδ(x− xo) (16)

where δ(x) is the two-dimensional Dirac delta function. The solution G is easily found
to be given by

G(x, xo) = K0(aρr)

where ρr = |x − xo|, K0 is the zeroth-order modified Bessel function of the second
kind and

a2 = ε(ε+ 2p). (17)

We let ψ̃ be the Laplace transform of ψ:

ψ̃ =

∫ ∞
0

exp(−pt)ψdt. (18)

Then ψ̃ is governed, from (4), by

ζ̃ = −∇2ψ̃. (19)

From the boundary and initial conditions (5), we have the following relations:

ψ̃ =
y

p
,
∂ψ̃

∂n
=

1

p

∂y

∂n
on S,

∂ψ̃

∂x
,
∂ψ̃

∂y
→ 0 as |x| → ∞,

ζ̃→ 0 as |x| → ∞.


(20)

Taking into account (20), we can easily obtain ψ̃ as

ψ̃(xo) =
1

2π

∫
D

ζ̃ log

(
1

ρr

)
dxdy. (21)

The additional term (1/2π)
∮
S
(− log ρr(∂ψ̃/∂n) + ψ̃(∂ log ρr/∂n))ds must be zero, be-

cause this term is a potential flow with the boundary conditions v = 0 on S and u,
v → 0 as |x| → ∞. Details of the derivation of G and (21) are in the typescript in the
editorial files.

2.2. Expressions with respect to one variable

We here assume that the cylinder is symmetric with respect to the x-axis. Then we
can reduce (14) and (21) to simple integral expressions, following the idea of Kida &
Take (1992a, b). Equation (14) can be expressed as

ζ̂(r, ϕ) = − ε

2π

∫ 2π

0

∫ ∞
rs(θ)

G(r, ϕ, r1, θ)F(r1, θ)r1dr1dθ + F0(r, ϕ).

where x = (x, y) = (r1 cos θ, r1 sin θ), xo = (xo, yo) = (r cosϕ, r sinϕ), and xs =
(xs, ys) = (rs(θs) cos θs, rs(θs) sin θs). The function F0 is defined by

F0(r, ϕ) ≡ 1

2π

∮
S

[
G
∂ζ̂

∂n
− ζ̂ ∂G

∂n

]
ds. (22)
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The above relation can also be rewritten as

1

2π

∫ 2π

0

[
ζ̂(r, ϕ) + ε

∫ ∞
rs(θ)

G(r, ϕ, r1, θ)F(r1, θ)r1dr1 − F0(r, ϕ)

]
dθ = 0.

Let fs be some odd function with respect to θ, that is,
∫ 2π

0
fsdθ = 0. Then we can

reduce (14) to a simple expression:

ζ̂(r, ϕ) = −ε
∫ ∞
rs(θ)

F(r1, θ)G(r, ϕ, r1, θ)r1dr1 + F0(r, ϕ) + fs(r, θ, ϕ). (23)

Similarly (21) is reduced to

ψ̃(r, ϕ) =

∫ ∞
rs(θ)

exp (−εr1 cos θ)ζ̂(r1, θ) log

(
1

ρr

)
r1dr1 + gs(r, θ, ϕ) (24)

where ρr = (r2 + r2
1−2rr1 cos (θ − ϕ))1/2. Here gs is defined as some odd function with

respect to θ. The system of equations (23) and (24) is considered to be the integral
equations with respect to the variable r with a parameter θ. The idea of Kida (1991)
and Kida & Take (1995) is, therefore, applicable to these equations.

3. Asymptotic analysis
3.1. Local regions

We consider asymptotic solutions of the integral equations (23) and (24) with the
boundary conditions (20) with respect to the small parameter ε. The equations are

nonlinear on ψ̃ and ζ̂, but these unknown functions are not contained in the kernel
functions of (23) and (24). Therefore, the analysis given by Kida (1991) and Kida &
Take (1995) will apply to the present problem.

We assume that the solutions are sufficiently differentiable except at the boundary
of the cylinder and their regular and local expansions exist in a subdomain of the
entire region outside the cylinder. Since the constant a defined by (17) is of the order
of the function ε, a = {ε(ε+ 2p)}1/2, we let a be a small perturbation parameter. We
define the integral operator Ka:

Kaφ =

∫ ∞
rs(θ)

K0(aρr)φ(r1)dr1 (25)

where φ is an arbitrary test function independent of a, for which the above integral
exists. Following Kida (1991), the integral operator Ka is decomposed as

Ka =K0 +Kp (26)

where

K0φ =

∫ ∞
rs(θ)

(
−γ − log

(
1
2
ρr
)
− log a

)
φ(r1)dr1. (27)

Here γ is Euler’s constant and the operator Kp satisfies

lim
a→0
Kpφ = 0.

In deriving the above relation, we have used the asymptotic expansion of the modified
Bessel function:

K0(ρr) ∼ − log
(

1
2
ρr
)
− γ for ρr � 1. (28)
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Figure 2. Schematic diagram of the matching regions.

We have to note that the logarithmic term, log a, is included in the kernel of the
operator K0, that is, the generalized expansions will be used in the present analysis.

The region near x = ∞ is considered to be significant if a significant local region
exists. We define the local operator K∗

a which is given by the local variable r∗ = δr
where δ → 0 as a→ 0:

K∗
aφ
∗ =

∫ ∞
δrs(θ)

K0

(a
δ
ρ∗r

)
φ∗(r∗1)dr∗1 (29)

where φ∗ is a test function independent of a and ρ∗r = (r∗2 + r∗21 − 2r∗r∗1 cos(θ−ϕ))1/2.
If we take δ to be a, we easily see that the above local operatorK∗

a is significant (the
definition of ‘significant’ is given in Kida 1991). From this fact, the significant local
variable is given by r∗ = ar.

Thus, the significant local region of the present problem is dependent on the order
of p, since a is dependent on p and ε. Figure 2 shows a schematic diagram of the
local regions. When p is of the order of 1/ε, that is region (I), there is no significant
local region, since a is of the order of unity. When p is of the order of unity, the
significant local region (III) exists for r = O(1/ε1/2). When p is of the order of ε, the
significant local region (IV) exists for r = O(1/ε).

A similar discussion is necessary for (24). We easily see that the significant local
variable is given by R = εr independent of the order of p. As will be shown in the

following sections, 3.2 and 3.3, ζ̂ is exponentially small for R = O(1) in the cases
of p = O(1) and O(1/ε). Therefore, the significant local region of this equation is
contained in the above local regions.

Note that there is the possibility of the existence of other local regions arising from
the nonlinear term F . For steady flow at low Reynolds number, this possibility is
zero (Kida & Take 1992a), so it also may be zero for the present problem. Further,
we have to note that the above discussion shows the possibility of existence of five
local regions in the asymptotic analysis.

Let us derive the governing fundamental differential equations corresponding to
these regions from the vorticity equation (6). In region (I), time t is very small, so that
we define the stretched time τ as τ = t/ε. Then the governing equation, (6), becomes

∇2ζ − 2
∂ζ

∂τ
≈ 0.

In region (II), time t is of O(1) and the space coordinates are of O(1). Therefore, (6)
becomes

∇2ζ ≈ 0.
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In region (III), time t is of O(1) and the space coordinates are of O(1/ε1/2), so that
we set the stretched space coordinates as (x̂, ŷ) = ε1/2(x, y). Then, we have

∇2
x̂ŷζ − 2

∂ζ

∂t
≈ 2f

where ∇2
x̂ŷ = ∂2/∂x̂2 + ∂2/∂ŷ2. In region (IV), time t is of O(1/ε) and the space

coordinates are of O(1/ε), so that the stretched time and coordinates are defined as
τ = εt and (X,Y ) = ε(x, y). Then, we have

∇2
X,Y ζ − 2

∂ζ

∂τ
+
∂ζ

∂X
≈ 2

ε
f.

In region (V), time t is of O(1/ε) and the space coordinates are of O(1), so that the
stretched time τ is defined as τ = εt. Thus, we have

∇2ζ ≈ 0.

The fundamental governing differential equation in region (II) is identical with that
in region (V), that is, steady Stokes flow, and the fundamental equation in region (I)
is also identical with that in region (III), that is, unsteady Stokes flow. However, the
stretched coordinates are different for these two pairs of regions, so that the solutions
in the two regions are different, as will be shown in the following sections. Thus, we
see that five regions are necessary in the present problem and the application of the
matched asymptotic expansion to integral equations is systematic. Further, we see
that the generalized asymptotic expansions are easily derived, as shown in (27).

The present results show that (i) in the initial stage of motion the entire flow is
essentially unsteady Stokes flow, (ii) with the development of time the unsteadiness
develops downstream so that the flow near the cylinder is essentially steady Stokes but
the far field is unsteady Stokes flow, so that Stokes–Oseen-like matching is necessary
in this stage, and (iii) with further development of time the inertia term cannot be
neglected far downstream so that the flow becomes of Stokes–Oseen type and the
matching of Stokes–Oseen flow is necessary.

3.2. Region (I)

Region (I) is the flow in the case where p is very large, that is, the beginning of motion
corresponding to the case that Bar-Lev & Yang (1975) analysed, using the method
of matched asymptotic expansions with respect to the coordinate perturbation of the
time axis. In this region we define a new variable p̂ by

p̂ = (2εp)1/2. (30)

Then, since a = (ε2 + p̂2)1/2 from (17), that is, a = O(1), the degeneration of Ka is
given by

K0φ =

∫ ∞
rs(θ)

K0(p̂ρr)φ(r1)dr1. (31)

The first approximation of F0 is given by

F0 ≈
1

2π

∮
S

[
K0(p̂ρr)

∂ζ̂

∂n
− ζ̂ ∂

∂n
K0(p̂ρr)

]
ds.
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Figure 3. Low Reynolds number flow past a circular cylinder.

The vorticity ζ̂ is, therefore, given from (23) by

ζ̂ =
1

2π

∮
S

[
K0(p̂ρr)

∂ζ̂

∂n
− ζ̂ ∂

∂n
K0(p̂ρr)

]
ds+ fs0 + O(εF). (32)

From (24), the stream function ψ̃ is given by

ψ̃ =
1

2π

∫ ∞
rs

ζ̂ log

(
1

ρr

)
r1dr1 + gs0 + O(εF). (33)

Since ψ̃ is of O(ε) from the boundary condition (20), ψ̃ = 2εy/p̂ on S , ζ̂ and ψ̃ are
of O(ε), hence F is of O(ε). Integrating (32) and (33) with respect to θ, we finally have

ζ̂ =
1

2π

∮
S

[
K0(p̂ρr)

∂ζ̂

∂n
− ζ̂ ∂

∂n
K0(p̂ρr)

]
ds+ O(ε2), (34)

ψ̃ =
1

2π

∫ 2π

0

∫ ∞
rs

ζ̂ log

(
1

ρr

)
r1dr1dθ + O(ε2). (35)

The unknowns, ∂ζ̂/∂n and ζ̂ on S , are determined from the following boundary
condition:

ψ̃ =
2εy

p̂2
on r = rs(ϕ), (36)

∂ψ̃

∂n
=

2ε

p̂2

∂y

∂n
on r = rs(ϕ). (37)

We apply the above results to the flow around an impulsively started circular cylinder,
as shown in figure 3. The modified Bessel function is expressed as

K0(p̂ρr) = K0(p̂r)I0(p̂r1) + 2

∞∑
m=1

Km(p̂r)Im(p̂r1) cosm(θ − ϕ) for r > r1 (38)

where Im and Km are the modified mth-order Bessel function of the first and second
kind. Therefore, we have from (34) the first approximation of ζ̂:

ζ̂ = ε

∞∑
m=1

cmKm(p̂r) sin (mϕ) (39)

where cm is given by

cm =
1

ε

1

π

∫ 2π

0

(
−Im(p̂r1)

∂ζ̂

∂r1
+ ζ̂

∂

∂r1
Im(p̂r1)

)
r1=1

sin(mθ)dθ. (40)

We note that cm (m = 1, 2, . . .) is at most of O(1), since ζ̂ is of O(ε).
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We substitute (39) into (35), then the stream function is obtained as follows:

ψ̃ ≈ ε1
2

∞∑
m=1

cm
1

m

[
1

p̂

{
−2m

p̂
Km(p̂r) +

(
1

r

)m
Km+1(p̂)

}]
sin (mϕ). (41)

We here used the following relation:

− log
1

ρr
=


log r −

∞∑
m=1

1

m

(r1
r

)m
cosm(θ − ϕ) for

r1

r
< 1

log r1 −
∞∑
m=1

1

m

(
r

r1

)m
cosm(θ − ϕ) for

r

r1
< 1.

(42)

The constants cm, therefore, are determined from the boundary condition (36):

c1 =
4

p̂K0(p̂)
, cm = 0 (m > 2).

Thus, ψ̃ and ζ̂ in this region are finally obtained as

ψ̃ ≈ 2ε

p̂2

1

K0(p̂)

{
−2

p̂
K1(p̂r) +

K2(p̂)

r

}
sinϕ, (43)

ζ̂ ≈ 4ε

p̂

K1(p̂r)

K0(p̂)
sinϕ. (44)

We note that the boundary condition (37) is automatically satisfied. Details of the
analysis are in the typescript in the editorial files.

3.3. Regions (II) and (III)

With the increase of time the viscous force begins to influence the far-field flow. At
this time the fundamental equation of the flow in region (III) is unsteady Stokes
equation; however, matching of the Stokes–Oseen type is necessary to get a uniform
approximate solution.

In regions (II) and (III), p is of O(1), so that we define p0 as

p0 ≡ 2p. (45)

Then, since a = {ε(ε+p0)}1/2 from (17), we easily see that the significant local variable
r∗ of the integral operator Ka is given by

r∗ = ε1/2r. (46)

The degeneration of Ka in region (II) is given from (27) by

K0φ = −
∫ ∞
rs(θ)

(
γ + log

(εp0)
1/2

2
+ log ρr

)
φ(r1)dr1. (47)

In this case, the function F0 becomes

F0 =
1

2π

∮
S

{
∂ζ̂

∂n

(
−γ − log

(εp0)
1/2

2
+ log

1

ρr

)
− ζ̂ ∂

∂n
log

1

ρr

}
ds+ O(ε).

Kida & Miyai (1973) proposed a method to obtain an asymptotic expansion of
an integral equation whose kernel has a small parameter, in the case of the singular
perturbation problem. This concept is proved to be reasonable by Kida (1991). They
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assume that the integrand in the outer region is indeterminate when the asymptotic
expansion is obtained on the inner region. By using this concept, let us try to obtain
the asymptotic expansion of the following integral If with fixed r:

If =

∫ 2π

0

∫ ∞
rs(θ)

F(r1, θ)K0((εp0)
1/2ρr)r1dr1dθ. (48)

We divide the integral domain into two parts:

If =

∫ 2π

0

∫ 1/δo

rs(θ)

FK0

(
(εp0)

1/2ρr
)
r1dr1dθ +

∫ 2π

0

∫ ∞
1/δo

FK0

(
(εp0)

1/2ρr
)
r1dr1dθ

where δo = ε1/2+s for some s > 0. When we obtain the asymptotic expansion in region
(II), Kida (1991) shows that it is reasonable to estimate the above integral under the
assumption that F for 1/δo 6 r1 is indeterminate. Therefore, we have

If =

∫ 2π

0

∫ 1/δo

rs(θ)

FK0

(
(εp0)

1/2ρr
)
r1dr1dθ +

∫ 2π

0

∫ ∞
1/δo

F

[
K0

(
(εp0)

1/2r1
)
I0

(
(εp0)

1/2r
)

+2

∞∑
m=1

Km

(
(εp0)

1/2r1
)
Im
(
(εp0)

1/2r
)

cosm(θ − ϕ)

]
r1dr1dθ.

Taking into account that F is odd function of θ, we have from the above equation:

If =

∫ 2π

0

∫ 1/δo

rs(θ)

FK0

(
(εp0)

1/2ρr
)
r1dr1dθ +

∞∑
m=1

C̃s
mr

m sin(mϕ)

where

C̃s
m = O

[
(εp0)

m/2

∫ 2π

0

∫ ∞
1/δo

Km

(
(εp0)

1/2r1
)
F sin(mθ)r1dr1dθ

]
= O

(
εm/2

∫ ∞
1/δo

(
1

ε1/2r1

)m
r1dr1F

)
= O(δm−2

o F)

≈ O(εm/2−1F).

Thus, C̃s
m is an indeterminate constant being of O(εm/2−1F), because F is indeterminate

for 1/δo 6 r1. The first term of the right-hand side of the above equation for If is
rewritten as

(first term) ≈
∫ 2π

0

Pf

∫ ∞
rs(θ)

F

(
−γ − log

(εp0)
1/2

2
+ log

1

ρr

)
r1dr1dθ

−
∫ 2π

0

Pf

∫ ∞
1/δo

F

(
−γ − log

(εp0)
1/2

2
− log r1

+

∞∑
m=1

1

m

(
r

r1

)m
cosm(θ − ϕ)

)
r1dr1dθ

≈
∫ 2π

0

Pf

∫ ∞
rs(θ)

F

(
−γ − log

(εp0)
1/2

2
+ log

1

ρr

)
r1dr1dθ +

∞∑
m=1

Ĉs
mr

m sin(mϕ)

where Ĉs
m is a constant of O(εm/2−1F). Integral sign, Pf

∫ ∞
rs

( )dr1 denotes the finite part
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of lim
δ0→0

∫ 1/δ0

rs

( )dr1. Therefore, we finally arrive at

ζ̂ ≈ 1

2π

∮
s

{
∂ζ̂

∂n
log

1

ρr
− ζ̂ ∂

∂n
log

1

ρr

}
ds

+
ε

2π

∫ 2π

0

Pf

∫ ∞
rs

F log (ρr) r1dr1dθ −
ε1/2

2

∞∑
m=1

Cs
mr

m sin (mϕ) (49)

where Cs
m = ε1/2(C̃s

m + Ĉs
m)/π. Since C̃s

m is indeterminate and of O(εm/2−1F), therefore
Cs
m is at this stage an indeterminate constant of O(εm/2−1/2), which is determined by

the matching process. Following similar steps, we arrive at

ψ̃ ≈ 1

2π

∫ 2π

0

Pf

∫ ∞
rs

ζ̂ log

(
1

ρr

)
r1dr1dθ

− ε

2π

∫ 2π

0

Pf

∫ ∞
rs

ζ̂ log

(
1

ρr

)
r2

1 cos(θ)r1dr1dθ −
1

2

∞∑
m=1

Es
mr

m sin (mϕ) (50)

where Es
m is also an indeterminate constant of O(εm/2−1ζ̂) which is determined by the

matching process.

In region (III), the significant local operator K∗
a of Ka is given by

K∗
aφ
∗ =

∫ ∞
ε1/2rs(θ)

K0

(
(ε+ p0)

1/2ρ∗r
)
φ∗(r∗1)dr∗1

where ρ∗r = (r∗2 + r∗1
2 − 2r∗r∗1 cos(θ − ϕ))1/2. The degeneration of K∗

a is given by

K∗
0φ
∗ =

∫ ∞
0

K0

(
p

1/2
0 ρ∗r

)
φ∗dr∗1 . (51)

Using relation (38), we have the function F0 from (22) and the symmetry of flow as
follows:

F0 = (εp0)
1/2C0K1

(
p

1/2
0 r∗

)
sinϕ+ O(ε) (52)

where

C0 ≈
1

2π

∮
S

{
∂ζ̂

∂n
rs sin θs − ζ̂

∂

∂n
(rs sin θs)

}
ds.

Let us consider the integral If defined by (48) for the significant local variable r∗.
In this variable, If can be expressed as

If =
1

ε

∫ 2π

0

(∫ ∞
δo

+

∫ δo

ε1/2rs

)
FK0

(
p

1/2
0 ρ∗r

)
r∗1dr∗1dθ

where δo is of order of ε1/2−s for some s (s > 0). In this region, F for ε1/2rs 6 r∗ 6 δo
is indeterminate, so that we follow similar steps as in region (II) and we finally arrive
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at, by using (38),

ζ̂∗ ≈ C0p
1/2
0 K1

(
p

1/2
0 r∗

)
sinϕ− ε1/2

2π

∫ 2π

0

Pf

∫ ∞
0

F∗K0

(
p

1/2
0 ρ∗r

)
r∗1dr∗1dθ

+
ε1/2

2

∞∑
m=1

DmKm

(
p

1/2
0 r∗

)
sin (mϕ), (53)

ψ̃∗ ≈ 1

2π

∫ 2π

0

Pf

∫ ∞
0

ζ̂∗ log

(
1

ρ∗r

)
r∗1dr∗1dθ

−ε
1/2

2π

∫ 2π

0

Pf

∫ ∞
0

ζ̂∗ log

(
1

ρ∗r

)
r∗21 cos θdr∗1dθ +

1

2

∞∑
m=1

Hm

r∗m
sin (mϕ) (54)

where Dm and Hm are at this stage indeterminate constants of O(εm/2+1F∗) and

O(εm/2+1ζ̂∗) respectively, which are determined by the matching process. Integral sign,

Pf
∫ ∞

0
( )dr∗1, denotes the finite part of lim

δ0→0

∫ ∞
δ0

( )dr∗1. We see from (53) and (54) that

the fundamental governing equation of this flow is of Stokes type, because in (54) the
exp(−r∗1 cos θ) term is not in the integrand and its effect appears in the second term

of the right-hand side of this equation. Here ζ̂∗, ψ̃∗, and F∗ are defined by

ζ̂∗ =
ζ̂

ε1/2
, ψ̃∗ = ε1/2ψ̃, F∗ =

F

ε
. (55)

Details of the derivation of (53) and (54) are in the typescript in the editorial files.
Let us consider the flow around the circular cylinder. From (49) and (50), the

solutions in region (II) are given by

ζ̂ ≈
∞∑
m=1

am sin (mϕ)

(
1

r

)m
, (56)

ψ̃ ≈ 1

2
a1 sinϕ

(
1

r

r2 − 1

2
− r log r

)
+

1

2

∞∑
m=2

am
sin (mϕ)

m

[(
1

r

)m
r2 − 1

2
+

rm

2m− 2

r2

r2m

]
− 1

2

∞∑
m=1

Es
mr

m sin (mϕ) (57)

where

am = − 1

2π

∫ 2π

0

(
1

m

∂ζ̂

∂r
− ζ̂
)
r=1

sin(mθ)dθ.

Since the boundary condition (20) of ψ̃ becomes ψ̃ = (2/p0) sinϕ for r = 1, we have

am ≈ 0 (m 6= 1), (58)

Es
1 ≈ −

4

p0

and Es
m ≈ 0 (m 6= 1). (59)

Thus, we have

ζ̂ ≈ a1

r
sinϕ, (60)

ψ̃ ≈
[

1

2
a1

{
1

r

r2 − 1

2
− r log r

}
+

1

p
r

]
sinϕ. (61)
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Let us consider the matching between region (II) and region (III). As r → ∞,

ζ̂ → (a1/r) sinϕ and ζ̂∗ → (C0/r
∗) sinϕ for r∗ → 0 from (53), we have the following

relation from the matching requirement of ζ̂ between region (II) and region (III):

C0 = a1, Dm ≈ 0.

The stream function ψ̃ as r →∞ is given from (61) by

ψ̃ →
[

1

2
a1

{ r
2
− r log r

}
+
r

p

]
sinϕ.

On the other hand, the stream function ψ̃∗ is obtained by substituting (53) into (54):

ψ̃∗ ≈ C0

2π
p

1/2
0

∫ ∞
0

Pf

∫ ∞
0

K1

(
p

1/2
0 r∗1

)
sin θ log

(
1

ρ∗r

)
r∗1dr∗1dθ +

H1

2r∗
sinϕ.

Therefore, we have

ψ̃∗ ≈ C0

2
p

1/2
0

[
Pf

∫ r∗

0

K1

(
p

1/2
0 r∗1

) r∗1
r∗
r∗1dr∗1 + r∗ Pf

∫ ∞
r∗
K1

(
p

1/2
0 r∗1

)
r∗1dr∗1

]
sinϕ+

H1

2r∗
sinϕ

≈ C0

2
p

1/2
0

[
r∗

p
1/2
0

K0

(
p

1/2
0 r∗

)
− r∗

p
1/2
0

K2

(
p

1/2
0 r∗

)
+

2

p
3/2
0

1

r∗

]
sinϕ+

H1

2r∗
sinϕ. (62)

From (62), we have as r∗ → 0

ψ̃∗ ≈ C0

2
p

1/2
0

[
r∗

p
1/2
0

(
−γ − log

p
1/2
0

2
− log r∗

)
+

r∗

2p
1/2
0

]
sinϕ+

H1

2r∗
sinϕ.

Thus we can determine the constants C0 and H1 by the matching requirement of the
stream function:

C0 ≈ −
4

p

1

2
(
γ + 1

2
log ε

)
+ log p− log 2

, (63)

H1 ≈ − 1
2
εC0. (64)

Details of derivation of (56)–(64) are in the typescript in the editorial files. From
these results, we finally obtain the following relations:

Case (II):

ζ̂ ≈ C0

r
sinϕ, (65)

ψ̃ ≈ C0

2

(
r2 − 1

2r
− r log r

)
sinϕ+

r

p
sinϕ; (66)

Case (III):

ζ̂ ≈ C0(2pε)
1/2K1

(
(2p)1/2r∗

)
sinϕ, (67)

ψ̃ ≈ C0

2ε1/2

{
r∗K0

(
(2p)1/2r∗

)
− r∗K2

(
(2p)1/2r∗

)
+

1

pr∗

}
sinϕ− ε1/2

4

C0

r∗
sinϕ. (68)
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3.4. Regions (IV) and (V)

As time further increases, the viscous force influences the far flow field and the region
where the inertia force is comparable with the viscous force extends to the far field.

For this case, p is of O(1/ε). We define p̃ by

p̃ =
2p

ε
. (69)

The integral operator Ka becomes

Kaφ =

∫ ∞
rs(θ)

K0

(
ε(1 + p̃)1/2ρr

)
φ(r1)dr1. (70)

Therefore, the significant variable R is given by

R = εr. (71)

Then, the function F0 in region (IV) becomes from (22)

F0 ≈ ε (1 + p̃)1/2 Ĉ0K1

(
(1 + p̃)1/2 R

)
sinϕ (72)

where

Ĉ0 ≈
1

2π

∮
S

[∂ζ̂
∂n
rs sin θs − ζ̂

∂

∂n
(rs sin θs)

]
ds.

We note that Ĉ0 is the first approximation of the right-hand side of the above equation
with fixed p̃ but C0 given by (52) is one with fixed p0.

Following the procedure mentioned in §3.3, we finally arrive at the following
relations in this region:

ζ̂∗ ≈ α1K1

(
(1 + p̃)1/2 R

)
sinϕ− 1

2π

∫ 2π

0

Pf

∫ ∞
0

F∗K0

(
(1 + p̃)1/2ρ∗R

)
R1dR1dθ

+

∞∑
m=0

EmKm

(
(1 + p̃)1/2R

)
sin(mϕ), (73)

ψ̃∗ ≈ 1

2π

∫ 2π

0

Pf

∫ ∞
0

exp [−R1 cos θ] ζ̂∗ log

(
1

ρ∗R

)
R1dR1dθ (74)

where

α1 = (1 + p̃)1/2Ĉ0,

ρ∗R = (R2 + R2
1 − 2RR1 cos θ)1/2.

Integral sign, Pf
∫ ∞

0
( )dR1 denotes the finite part of lim

δ0→0

∫ ∞
δ0

( )dR1.

In (74), the term exp(−R1 cos θ) is in the integrand, so that the essential equation

in this region is of Oseen type. Here, ζ̂∗ and ψ̃∗ are defined by

ζ̂∗ =
ζ̂

ε
, ψ̃∗ = εψ̃, F∗ =

F

ε2
.

Furthermore, we obtain the solutions in region (V):

ζ̂ ≈ 1

2π

∮
S

[
σ0

∂

∂n
log ρr − µ0 log ρr

]
ds, (75)
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ψ̃ ≈ −r sinϕ

[
α1

2(1 + p̃)1/2
log ε− 1

2π

∫ 2π

0

Pf

∫ ∞
0

ζ̂∗ exp (−R1 cos θ) sin θdR1dθ

]

+
1

2π

∫ 2π

0

Pf

∫ ∞
rs

ζ̂ log

(
1

ρr

)
r1dr1dθ (76)

where σ0 = ζ̂, and µ0 = ∂ζ̂/∂n on S . We note that the second term in square brackets
in the right hand side of (76) is derived from the matching procedure between the
solutions in regions (IV) and (V) (see Kida & Take 1992a).

For the circular cylinder, the solutions in region (V) are given from (75) and (76)
by

ζ̂ ≈
∞∑
m=1

C̃m

rm
sin (mϕ), (77)

ψ̃ ≈ −r sinϕ

[
α1

2(1 + p̃)1/2
log ε− 1

2π

∫ 2π

0

Pf

∫ ∞
0

ζ̂∗0 exp (−R1 cos θ) sin θdR1dθ

]

+
1

2
C̃1 sinϕ

[
r2 − 1

2r
− r log r

]
+

1

2

∞∑
m=2

C̃m

m
sin (mϕ)

[
r2 − 1

2rm
+

r2

2m− 2

1

rm

]
(78)

where C̃m is constant. From the boundary condition (20), we easily see that

C̃m = 0 : m > 2, (79)

α1 ≈ −
1

p

/( 1

2(1 + p̃)1/2
log ε− Pf

∫ ∞
0

K1

(
(1 + p̃)1/2R1

)
I1(R1)

R1

dR1

)
. (80)

Assuming that F∗ ∼ o(α1), we can get C̃1 from the matching requirement between

the solutions in regions (IV) and (V) with respect to ζ̂:

C̃1 =
α1

(1 + p̃)1/2
.

From these results, α1 ∼ O(1/ log ε), so that F∗ ∼ O(1/ log2 ε). Thus, we see that the
above assumption is reasonable.

Summarizing these results, we finally arrive at the following relations:
for case (IV)

ζ̂ ≈ εα1K1

(
(1 + p̃)1/2R

)
sinϕ, (81)

ψ̃ ≈ 1

2πε

∫ 2π

0

∫ ∞
0

exp (−R1 cos θ)
ζ̂

ε
log

(
1

ρ∗R

)
R1dR1dθ; (82)

for case (V)

ζ̂ ≈ C̃1

r
sinϕ, (83)

ψ̃ ≈ r

p
sinϕ+

C̃1

2

(
r2 − 1

2r
− r log r

)
sinϕ. (84)
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We note that α1 is given by

α1 = − (1 + p̃)1/2

p

2

γ + log
(

1
2
ε
)

+ A
, (85)

A =
1

2
log (1 + p̃)− 1

2

(
−p̃ log

(
1 + p̃

p̃

)
+ 1

)
. (86)

Further, we note that C̃1 is not the same as C0 in case (II), that is, the Stokes solution
in region (II) is different from that in region (V). Details of the analysis in this section
are in the typescript in the editorial files.

4. Composite solution
In this section, we consider the composite solutions of the flow around a circular

cylinder with respect to the Laplace variable p, to obtain the stream function in the
real variables. As we see from figure 2, we must obtain the composite solutions with
respect to p for the three space variables r, r∗, and R.

We here denote the stream functions expressed by the Laplace variable p in regions
(I), (II), (III), (IV) and (V) as ψ̃I , ψ̃II , ψ̃III , ψ̃IV and ψ̃V , respectively. Further, we
denote the asymptotic expansion of ψ̃I with respect to p as ψ̃I→II . Similarly, we can
define the asymptotic expansion of ψ̃II with respect to p̂ as ψ̃II→I . The requirement
of the matching is ψ̃I→II = ψ̃II→I . We can confirm the requirement of the matching
with respect to p for each variable r, r∗ and R.

For the variable r, we have ψ̃I→II = ψ̃II and ψ̃V→II = ψ̃II . Therefore, we can arrive
at

ψ̃c = ψ̃I + ψ̃V − ψ̃II

=
1

p

1

K0

(
(2εp)1/2

) (− 2

(2εp)1/2
K1

(
(2εp)1/2r

)
+

1

r
K2

(
(2εp)1/2

))
sinϕ

+

(
C̃1

2
− C0

2

)(
r

2
− 1

2r
− r log r

)
sinϕ.

For the variable r∗, we have

ψ̃c = ψ̃I + ψ̃III + ψ̃V − ψ̃I→III − ψ̃III→V

=
1

p

K2

(
(2εp)1/2

)
K0

(
(2εp)1/2

) ε1/2
r∗

sinϕ− C0

(2εp)1/2
K1

(
(2p)1/2r∗

)
sinϕ

+

(
C̃1

2
− C0

2

)(
r∗

2ε1/2
− ε1/2

2r∗
− r∗

ε1/2
log

r∗

ε1/2

)
sinϕ.

For the variable R, we have

ψ̃c = ψ̃I + ψ̃III + ψ̃IV − ψ̃I→III − ψ̃III→IV

=
1

p

ε

R

K2

(
(2εp)1/2

)
K0

(
(2εp)1/2

) sinϕ− C0

2p

1

R
sinϕ

+
α1

2πε

∫ 2π

0

∫ ∞
0

exp (−R1 cos θ)

×K1

(
(1 + p̃)1/2R1

)
sin θ log

(
1

ρ∗

)
R1dR1dθ.



48 M. Nakanishi, T. Kida and T Nakajima

From these relations, we can get the stream function in real space using the
following relation:

ψ =
1

2πi

∫ c+i∞

c−i∞
exp(pt)ψ̃dp c > 0. (87)

It is however very difficult to obtain the analytical expressions for the stream function
from the above relation, so that in the present paper a numerical calculation is carried
out. In order to do this, we have to change the above contour of integration to a
contour which consists of the part of real axis from −∞ − i0 to −∞ + i0 passing
through a small circle having its centre at the origin and two small semicircles around
the origin p = −ε/2. We further use the following relations of the modified Bessel
functions (Erdelyi et al. 1953):

K0

(
x exp

(
± 1

2
πi
))

= ∓ 1
2
iπ (J0(x)∓ iY0(x)) ,

K1

(
x exp

(
± 1

2
πi
))

= − 1
2
π (J1(x)∓ iY1(x)) .

Finally, we have the following relation for r:

ψ ≈ rH(t) sinϕ− 1

π

(
2

ε

)1/2 ∫ ∞
0

exp(−xt)
x3/2

1

J2
0 (X) + Y 2

0 (X)

×
(

1

r
(J1(X)Y0(X)− J0(X)Y1(X))− (Y0(X)J1(Xr)− J0(X)Y1(Xr))

)
dx sinϕ

+

(
r

2
− 1

2r
− r log r

)
F2 sinϕ (88)

where Ji and Yi are Bessel functions of the first and second kind, X = (2εx)1/2, and
F2 is defined as follows:

F2 = F21 − F22

where F21 and F22 are given by

F21 = −1

2

∫ ∞
0

exp(−xt)
x

dx(
γ + log 1

2
ε1/2(2x)1/2

)2
+ 1

4
π2
,

F22 =
H(t)

γ + log 1
2
ε− 1

2

− 1

2

∫ ∞
ε/2

exp(−xt)
x

× dx(
γ + 1

2
log 1

2
ε+ 1

2
log
(
x− 1

2
ε
)
− 1

2
+
x

ε
log

(
x

x− 1
2
ε

))2

+
1

4
π2

−1

ε

∫ ε/2

0

exp(−xt)

× dx(
γ + 1

2
log 1

2
ε+ 1

2
log
(

1
2
ε− x

)
− 1

2
+
x

ε
log

(
x

1
2
ε− x

))2

+
π2x2

ε2

.
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For r∗, we have

ψ ≈ ε−1/2

r∗
1

2π

∫ ∞
0

exp(−xt)
x2

[
π

1
4
π2 +

(
γ + 1

2
log 1

2
εx
)2

− 4

π

1

J0(X1)2 + Y0(X1)2

]
dx sinϕ+

 r∗

ε1/2
+

∫ ∞
0

exp(−xt)
xX1

×

J1(X2r
∗)
(
γ + 1

2
log 1

2
εx
)
− 1

2
πY1(X2r

∗)− 1

(2x)1/2

1

r∗(
γ + 1

2
log 1

2
εx
)2

+ 1
4
π2

 dx

 sinϕ

+ (F21 − F22)

(
r∗

ε1/2
− ε1/2

2r∗
− r∗

ε1/2
log

r∗

ε1/2

)
sinϕ (89)

where X1 = (2εx)1/2 and X2 = (2x)1/2.
For R, we have

ψ ≈ 1

R

1

2π

∫ ∞
0

exp(−xt)
x2

[
π

1
4
π2 +

(
γ + 1

2
log 1

2
εx
)2
− 4

π

1

J0(X1)2 + Y0(X1)2

]
dx sinϕ

+
1

ε2

∞∑
m=1

sin(mϕ)

[∫ t

0

1

s2
exp(−1

2
εs)F22(t− s)ds

(
1

Rm

∫ R

0

exp

(
− R

2
1

2εs

)
Rm+1

1 Im(−R1)dR1

+Rm
∫ ∞
R

exp

(
− R

2
1

2εs

)
R−m+1

1 Im(−R1)dR1

)]
. (90)

There are integrals in the above relations which are singular, so that in the actual
numerical calculation we have used the asymptotic expressions near x = 0, that is,
we subtract the asymptotic expressions from the integrand and the integration of the
asymptotic terms is carried out changing the integral variable. The details of the
formation of the composite solutions are given in the typescript in the editorial files.

5. Aerodynamic force
The aerodynamic force on the cylinder is calculated from the pressure force and

the shearing stress. From the no-slip condition on the surface of the cylinder, we have
from (1)

gradP = − ∂

∂x
u+

1

Re
∇2u on S. (91)

The coordinate system taken in (91) is the absolute one, so that the first term results
from the motion of the cylinder. From this equation, the pressure on the surface of
the cylinder is given by

P = −u−
∫
ζdy +

1

Re

∫ (
−∂ζ
∂y

dx+
∂ζ

∂x
dy

)
. (92)
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The drag coefficient due to the pressure force, CDp, is given by using integration by
parts:

CDp = −2

∫ 2π

0

∂P

∂θ
rs sin θdθ. (93)

The drag coefficient due to the shearing stress on the surface of the cylinder, CDf , is
given by

CDf = − 2

Re

∮
S

ζdx. (94)

Thus, we have the total drag force coefficient, CD , by summing the above two
coefficients.

For a circular cylinder, we easily find from (92)–(94) that

CD =
2

Re

∫ 2π

0

(
ζ − ∂ζ

∂r

)
sin θdθ. (95)

Since the vorticity given in the absolute coordinate system is the same as in the relative
coordinate system, the composite solution of ζ̃ near the surface of the cylinder in the
Laplace transform plane is given from the solutions in regions (I), (II) and (V) by

ζ̃ = 4

(
ε

2p

)1/2 K1

(
(2εp)1/2r

)
K0

(
(2εp)1/2

) sin θ + C̃
1

r
sin θ (96)

where C̃ is defined by

C̃ =
2

p

 1

γ + 1
2

log p+ 1
2

log ε− 1
2

log 2

− 1

γ + log 1
2

+ log ε+ 1
2

log

(
2p+ ε

ε

)
− 1

2

{
2p

ε
log

(
2p

ε+ 2p

)
+ 1

}
 . (97)

Therefore, we have the Laplace transform of the drag coefficient, C̃D:

C̃D =
4π

Re

[
ε

{
1 +

K2

(
(2εp)1/2

)
K0

(
(2εp)1/2

)}+ 2

(
ε

2p

)1/2 K1

(
(2εp)1/2

)
K0

(
(2εp)1/2

) + C̃

]
.

Carrying out the inverse Laplace transform, we finally have

CD =
1

2πi

∫ c+i∞

c−i∞
exp (pt)C̃Ddp ∼= 2π

[
2δ(t) +

2

ε
(Î2 − Î3) + 4Î1

]
(98)

where

Î1 =
2

π2

2

Re
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0
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(
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2
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2
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1
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2
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∫ ∞
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exp

(
− x

2

Re
t

)
1

x

1

1 + (4/π2)
(
log 1

2
x+ γ

)2
dx,
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Î2 =
4

π2

∫ ∞
0

1− exp
(
−(t/Re)x2

)
x
[
1 + (4/π2)

(
γ + log 1

2
x
)2
]dx,

Î3 =
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Re/2

1

x

(
1− exp

(
− t

Re
x2
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× 1[
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2

log 1
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(
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2
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log

(
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+ 1
4
π2

dx

+

∫ Re/2

0

(
1
2
Re
)2

x3

((
1
2
Re
)2

x2

)2

×
1− exp

(
−(t/Re)x2

)[
γ+ 1

2
log 1

4

((
1
2
Re
)2−x2

)
+

x2

2
(
Re/2

)2
log

(
x2(

Re/2
)2−x2

)
− 1

2

]2

+
π2

4

(
x

Re/2

)4
dx.

To compare the present result with Bar-Lev & Yang (1975), we can obtain the
asymptotic solution of CD for t� 1, using the asymptotic expansions of the modified
Bessel functions Km. The final expression becomes

C̃D ≈ ε
4π

Re

(
2 +

4

x
+

2

x2
− 1

2x3
+
C̃

ε

)
(99)

where x = (2εp)1/2 and C̃ is given by (97). Thus, we finally have (see the Appendix)

C∗D = 2π

[
2δ(t) +

4

(πtRe)1/2
+

2

Re
H(t)− t1/2

Re(πRe)1/2
+

∫ ∞
− log t

exp(−x)

x2
dx

]
. (100)

We note that the first four terms in the square bracket of (100) of the present result
agree well with Bar-Lev & Yang (1975). The details of the analysis in the present
section are contained in the typescript in the editorial file.

6. Numerical results
Figure 4(a–d) shows the drag coefficient CD . In this figure, the solid line and

the broken line are the present results calculated from (98) and (100), respectively.
We see that the drag coefficient C∗D given from the asymptotic expression (100) is
only valid for very early time from the motion. The asymptotic expression (100) is
valid for x � 1, so that it is theoretically reasonable for t � Re, but it is almost
valid for t 6 1 in the case of Re > 0.5. We see from this figure that the drag
coefficient decreases monotonically to the steady one with time. Figure 5 shows the
drag coefficient calculated by the present method together with earlier results. The
present ones are for t = 1000. This implies that the present results are almost steady
flow. Earlier theoretical results are given by Kaplun (1957) and Kida & Take (1992b)
and the experimental ones are given by Tritton (1959) for the steady flow. The present
results, shown as dots, are the first approximation; the result of Kaplun (1957) is the
second approximation with respect to 1/ logRe and the results given by Kida & Take
(1992b) are the higher approximation; however, we see that the present solution is in
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Figure 4. Drag coefficients CD (solid line) and C∗D (dotted line): (a) Re = 0.1,
(b) Re = 0.5, (c) Re = 0.7, (d) Re = 1.0.
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Figure 5. Comparison of the drag coefficient for steady flow with earlier theories and experiment:
solid line is Kaplun (1957), dashed line is Kida & Take (1992b), open circles are experimental
results given by Tritton (1975), and solid circles are the present results.

agreement with experimental works for steady flow for Re 6 1 ∼ 2. From (98), we
can obtain the following relation for t→∞ and small Re:

CD ∼ −
8π

Re

1

γ + log 1
4
Re
.

This shows the increase of CD with small Re. The details are in the typescript in the
editorial files. The rapid change of the CD curve near Re = 3.7 is due to the singularity
of (98). In the second term of the right-hand side for Î3 in (98), the integrand becomes
very large near γ + log(Re/4) − 1

2
≈ 0: in this case the integrand is of O(1/x3 log2 x)
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Figure 6. Ratio of the drag coefficient CD and the steady one CDS for the circular cylinder
and the sphere.

for x→ 0, so that Î3 becomes very large with Re→ 4 exp( 1
2
− γ), that is, CD changes

from positive to negative abruptly near this value of Re.
Figure 6 shows a comparison with the case of a sphere given by Sano (1981). CDs

is the drag coefficient in the steady flow. The drag coefficient decreases abruptly at
the beginning of motion and decreases monotonically with time. This trend is the
same as in the flow past the sphere, but its rate is much slower. We see for small t
that CD/CDs ∼ −(Re/(πt))1/2/(γ + log(Re/4)) for a circular cylinder from (100) and
the above relation. For the sphere, CD/CDs ∼ (Re/(πt))1/2 is given by Sano (1981).
Further, this figure shows that the three-dimensional flow becomes almost steady flow
at dimensionless time unity, but it takes a long time to arrive at the steady flow in
the two-dimensional case. This implies that unsteady motion in the two-dimensional
flow is more important than that in the three-dimensional flow.

Figure 7(a–c) shows the time history of the streamline pattern around a circular
cylinder in the case of Re = 0.1. The streamlines shown in this figures are obtained
from (88), which is valid for r = O(1). They are symmetric with respect to the x-
and y-axes. The circulatory flow located in the immediate vicinity of the cylinder
is seen from the very early stage of motion and migrates outwards along the y-axis
with the progress of time. The flow near the surface of the cylinder from stagnancy
is disturbed onwards, so that the fluid is pushed out at the front and is entrained
at the rear, thus, the circulatory flow is formed. This feature is the same as in the
three-dimensional flow (Bentwich & Miloh 1978). Figure 8 shows the velocity field at
the same Reynolds number. The fluid at the front of the circular cylinder is pushed
out and it is entrained at the rear, so the circulatory flow is formed.

Figure 9 shows the vorticity distribution on the surface of the cylinder. At the
beginning of motion, the vorticity is large, 2Re1/2/(πt)1/2 sinϕ, which is obtained
from (44), and decreases with time. Comparing with the result for the flow around
the sphere (Sano 1981), 3Re1/2/(2(πt)1/2) sinϕ, we see that the vorticity around the
cylinder is larger than around the sphere at the early stages of motion; however, the
vorticity distributions for the steady flow are 2/(log 4−γ+(1/2)− logRe) sinϕ for the
cylinder (Skinner 1975) and 3/2 sinϕ for the sphere (see Lamb 1945), hence its value
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Figure 7. Time history of streamlines in the case Re = 0.1: (a) t = 0.04, (b) t = 1, (c) t = 50.
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Figure 8. Time history of velocity vectors in the case Re = 0.1: (a) t = 0.04, (b) t = 1, (c) t = 50.
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Figure 9. Vorticity distribution on the surfaces of (a) circular cylinder, (b) sphere.

is smaller in the flow past a circular cylinder than in the flow past a sphere, that is,
the effect of unsteady motion on the flow is more important in the two-dimensional
case.

Figure 10 shows the velocity profile u on the y-axis (θ = π/2). This figure also
implies the existence of the circulatory zone, that is, the reverse flow near the surface
of the cylinder appears at earlier stages (see t = 0.04). At earlier stages, the reverse
velocity is larger in the flow past a sphere than in the flow past a circular cylinder, as
shown in this figure, so that the circulatory zone is larger in the former flow. From
(43), we have for p� 1

∂ψ̃

∂r
≈ 1

p

(
2

r1/2
exp

(
−(2εp)1/2(r − 1)

)
− 1

r2

)
sinϕ.

Therefore, we have the velocity component of the ϕ-direction, uϕ for t� 1:

uϕ ≈ −
(

2

r1/2
erfc(η)− 1

r2

)
sinϕ

where

η =

(
Re

4t

)1/2

(r − 1).

From Bentwich & Miloh (1978), we have for the flow past a sphere:

uϕ ≈ −
(

3

2r
erfc(η)− 1

2r3

)
sinϕ.

From these relations, the centre of the circulatory flow approximately becomes for
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Thus, the time development of the circulatory flow is found to be almost the same.
Figure 11(a–d) shows the vorticity distribution of flows past a circular cylinder and

a sphere. In these figures, the steady flows are also shown. In the flow past a sphere,
the vorticity distribution at t = 0.04 is very similar to the steady one, but in the flow
past a circular cylinder it is different from the steady one. We, therefore, infer that
the effect of unsteady motion of two-dimensional bodies on flow is more significant
than of three-dimensional bodies.

7. Conclusion
The low Reynolds number flow around an impulsively started cylinder is solved

by using the method of matched asymptotic expansions. The governing integral
equations are derived and the method of matched asymptotic expansions proposed
by Kida & Take (1992a, b) is applied to these equations. The most important results
in the present paper are that (i) five regions are necessary to complete the matching
process, while in the flow past a sphere only three regions are necessary, and (ii) the
three-dimensional flow becomes almost steady flow at dimensionless time unity, but
it takes a long time to arrive at the steady flow in the two-dimensional flow.

The streamlines, the vorticity distribution and the drag coefficient are shown and
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Figure 11. Equivorticity lines in the case Re = 0.1, t = 0.04 and t = ∞:
(a) and (b) circular cylinder, (c) and (d) sphere.

compared with the flow around a sphere. Circulatory flow is formed and the time
development of the global flow is almost the same as in the flow past a sphere. The
drag coefficient decreases abruptly at the beginning of the and decreases monotonically
with time. The rate of the decrease is less than that in the flow past a sphere. The
vorticity field converges to its final steady form much more slowly in the case of the
circular cylinder than for the sphere. The vorticity distribution on the surface of the
circular cylinder is larger at the beginning of motion, decreases with time and finally
becomes smaller than in the flow past a sphere.

The authors are grateful to Mr E. J. Watson of the University of Manchester for
helpful comments and suggestions on the English of this manuscript.

Appendix
In (98), we consider the case of p→∞. We use the following relation:

K1(x)

K0(x)
≈ 1 +

1

2x
− 1

8x2
+ O(x−3).

Then we have (99). Carrying out the Laplace inverse transformation, we have

CD ≈
4π

Re
ε

(
2δ(t) +

4

(2ε)1/2

1

(πt)1/2
+

1

ε
H(t)− 1

(2ε)3/2

t1/2

π1/2
+

1

ε
L−1(C̃)

)
where L−1 denotes the inverse Laplace transformation.
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For large p, C̃ becomes

C̃ ≈ ε

4p2

1(
γ + 1

2
log 1

2
εp
)2
.

Here, we use the following relation:

L−1

(
1

γ + 1
2

log 1
2
εp

)2

=

∫ ∞
0

exp(−pt)

×
γ + 1

2
log 1

2
εp[(

γ + 1
2

log 1
2
εp
)2 − 1

4
π2

]2

+ π2
(
γ + 1

2
log 1

2
εp
)2

dp

≈ 1

t

∫ ∞
0

exp (−x)

(− log t)2
dx ≈ 8

t(− log t)3
.

Thus, we have

L−1(C̃) ≈
∫ t

0

∫ t

0

8

t(− log t)3
dtdt ≈ 4

∫ ∞
− log x

exp (−x)

x2
dx.
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